Abstract
Component analysis techniques for feature extraction in multi-sensor system (electronic nose) have been studied in this paper. A novel nonlinear kernel based Renyi entropy component analysis method is presented to address the feature extraction problem in sensor array and improve the odor recognition performance of E-nose. Specifically, a kernel entropy component analysis (KECA) as a nonlinear dimension reduction technique based on the Renyi entropy criterion is presented in this paper. In terms of the popular support vector machine (SVM) learning technique, a joint KECA-SVM framework is proposed as a system for nonlinear feature extraction and multi-class gases recognition in E-nose community. In particular, the comparisons with PCA, KPCA and ICA based component analysis methods that select the principal components with respect to the largest eigen-values or correlation have been fully explored. Experimental results on formaldehyde, benzene, toluene, carbon monoxide, ammonia and nitrogen dioxide demonstrate that the KECA-SVM method outperforms other methods in classification performance of E-nose. The MATLAB implementation of this work is available online at http://www.escience.cn/people/lei/index.html.
Original language | English |
---|---|
Pages (from-to) | 143-149 |
Number of pages | 7 |
Journal | Sensors and Actuators, A: Physical |
Volume | 234 |
DOIs | |
Publication status | Published - 1 Oct 2015 |
Keywords
- Classification
- Component analysis
- Electronic nose
- Feature extraction
- Renyi entropy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering