Abstract
Magnetic resonant wireless power transfer (MRWPT) is a developing technology to transfer power over a relatively long distance. It offers a promising solution in avoiding costly and risky battery replacement surgery in bio-implantable devices. One of the obstacles of the application of this transfer technique is that its efficiency is not satisfactory and the design method has not been presented systemically. In this paper, a design method of MRPWT system with a novel hybrid resonator for deep brain stimulation (DBS) device is proposed. A new formula to determine the diameter of the resonators according to the power transfer distance is presented. The merit of the proposed design is that the transmitter coil of the MRPWT system is modulated precisely with improved magnetic coupling towards the target coil while minimizing the power loss in the coils; hence the power transfer efficiency can be improved. Experiment is carried out to verify the validity and effectiveness of the proposed design method.
Original language | English |
---|---|
Article number | 6332703 |
Pages (from-to) | 4518-4521 |
Number of pages | 4 |
Journal | IEEE Transactions on Magnetics |
Volume | 48 |
Issue number | 11 |
DOIs | |
Publication status | Published - 29 Oct 2012 |
Keywords
- Finite element method
- magnetic resonant coupling
- optimization
- wireless power transfer
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering