Abstract
� 2016 IEEE. The use of Coulomb gauged formulation together with nodal elements, which imposes both tangential and normal continuity, may produce large errors at material interfaces or reentrant corners of problem domains. While traditional Coulomb gauged formulation is not valid for edge elements since the divergence of the edge element basis is zero within each element. In this paper, a novel formulation with Coulomb Gauge for magnetostatic problems using edge element is proposed. For the proposed method, the resultant linear system is symmetric and well-conditioned, which can be solved by direct solvers or iterative solvers efficiently. A numerical example is presented to showcase the accuracy and usefulness of the proposed method for practical engineering computation.
Original language | English |
---|---|
Title of host publication | IEEE CEFC 2016 - 17th Biennial Conference on Electromagnetic Field Computation |
Publisher | IEEE |
ISBN (Electronic) | 9781509010325 |
DOIs | |
Publication status | Published - 12 Jan 2017 |
Event | 17th Biennial IEEE Conference on Electromagnetic Field Computation, IEEE CEFC 2016 - Hotel Hilton Miami Downtown, Miami, United States Duration: 13 Nov 2016 → 16 Nov 2016 |
Conference
Conference | 17th Biennial IEEE Conference on Electromagnetic Field Computation, IEEE CEFC 2016 |
---|---|
Country/Territory | United States |
City | Miami |
Period | 13/11/16 → 16/11/16 |
Keywords
- Coulomb gauge
- Edge element
- Magnetostatics
ASJC Scopus subject areas
- Computational Mathematics
- Instrumentation
- Electrical and Electronic Engineering