A novel analytical model of air-gap permeance in tubular linear switched reluctance actuators with hybrid flux paths

X. Xue, K. Cheng, Y. Bao, Z. Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review


Due to simple and robust configuration, and without any coils and magnets on movers, a tubular linear switched reluctance actuator (TLSRA) is a promising candidate for applications of frequently reciprocating linear motion, such as linear compressors and automotive active suspension sys-tems[1-2]. For air-gap in a TLSRA, there are the longitudinal and transverse magnetic paths due to various mover positions. Change in air-gap permeance in a TLSRA results in the thrust force, which drives the mover for linear motion. Thus, the air-gap permeance is the crucial parameter for computing the thrust force in the electromagnetic design and estimating the real-time thrust force in force control of TLSRAs. In general, the air-gap permeance at two special positions can be calculated analytically, such as the maximum and minimum air-gap permeance[3]. It is a challenging issue that an analytically model is developed to compute the air-gap permeance at arbitrary mover positions. This paper focuses on that permeance model development.
Original languageEnglish
Title of host publication2015 IEEE International Magnetics Conference, INTERMAG 2015
ISBN (Electronic)9781479973224
Publication statusPublished - 1 Jan 2015
Event2015 IEEE International Magnetics Conference, INTERMAG 2015 - Beijing, China
Duration: 11 May 201515 May 2015


Conference2015 IEEE International Magnetics Conference, INTERMAG 2015

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Cite this