A novel analytical model of air-gap permeance in tubular linear switched reluctance actuators with hybrid flux paths

X. Xue, K. Cheng, Y. Bao, Z. Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Due to simple and robust configuration, and without any coils and magnets on movers, a tubular linear switched reluctance actuator (TLSRA) is a promising candidate for applications of frequently reciprocating linear motion, such as linear compressors and automotive active suspension sys-tems[1-2]. For air-gap in a TLSRA, there are the longitudinal and transverse magnetic paths due to various mover positions. Change in air-gap permeance in a TLSRA results in the thrust force, which drives the mover for linear motion. Thus, the air-gap permeance is the crucial parameter for computing the thrust force in the electromagnetic design and estimating the real-time thrust force in force control of TLSRAs. In general, the air-gap permeance at two special positions can be calculated analytically, such as the maximum and minimum air-gap permeance[3]. It is a challenging issue that an analytically model is developed to compute the air-gap permeance at arbitrary mover positions. This paper focuses on that permeance model development.
Original languageEnglish
Title of host publication2015 IEEE International Magnetics Conference, INTERMAG 2015
PublisherIEEE
ISBN (Electronic)9781479973224
DOIs
Publication statusPublished - 1 Jan 2015
Event2015 IEEE International Magnetics Conference, INTERMAG 2015 - Beijing, China
Duration: 11 May 201515 May 2015

Conference

Conference2015 IEEE International Magnetics Conference, INTERMAG 2015
Country/TerritoryChina
CityBeijing
Period11/05/1515/05/15

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A novel analytical model of air-gap permeance in tubular linear switched reluctance actuators with hybrid flux paths'. Together they form a unique fingerprint.

Cite this