A novel analysis method of electromagnetic vortex wave based on modified dynamic mode decomposition

Y. M. Zhang, M. L.N. Chen, L. J. Jiang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Recently, electromagnetic (EM) beams with the orbital angular momentum (OAM) have been explored for multiplexing in communication systems. Each OAM mode is encoded with data and can be identified by the OAM index, namely the topological charge. So far, the amplitude of OAM mode is gaining more attention for its application as another modulation format. Therefore, it is of great importance to accurately extract both the OAM index and corresponding amplitude. In this paper, we propose a modified dynamic mode decomposition (DMD) approach for the analysis of OAM modes. It is shown that not only topological charges but also high-resolution amplitude patterns of both single OAM mode and composite OAM modes can be obtained. The proposed approach provides an effective tool for the demultiplexing of OAM-carrying beams, especially in the case when the amplitude information is required.

Original languageEnglish
Title of host publication2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages185-192
Number of pages8
ISBN (Electronic)9781728153049
DOIs
Publication statusPublished - Dec 2019
Externally publishedYes
Event2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Xiamen, China
Duration: 17 Dec 201920 Dec 2019

Publication series

Name2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Proceedings

Conference

Conference2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019
Country/TerritoryChina
CityXiamen
Period17/12/1920/12/19

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'A novel analysis method of electromagnetic vortex wave based on modified dynamic mode decomposition'. Together they form a unique fingerprint.

Cite this