A novel active fire protection approach for structural steel members using NiTi shape memory alloy

H. Sadiq, M. B. Wong, R. Al-Mahaidi, X. L. Zhao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

12 Citations (Scopus)

Abstract

A novel active fire protection approach, based on integrating a shape memory alloy, NiTi, with a steel structure, was proposed to satisfy the fire resistance requirements in structural design. To demonstrate the principles of this approach, a simple structure in the form of a simply supported steel beam was used. The internal action of the beam due to a transverse applied load was reduced by utilizing the shape memory effect in the NiTi alloy at rising temperatures. As a result, the net internal action from the load design was kept below the deteriorated load capacity of the beam during the fire scenario for period of time that was longer than that of the original beam without the NiTi alloy. By integrating the NiTi alloy into the beam system, the structure remained stable even though the steel temperature exceeded the critical temperature which may have caused the original beam structure to collapse. Prior to testing the composite NiTi-steel beam under simulated fire conditions, the NiTi alloy specimens were characterized at high temperatures. At 300 °C, the stiffness of the specimens increased by three times and its strength by four times over that at room temperature. The results obtained from the high-temperature characterization highlighted the great potential of the alloy being used in fire engineering applications.

Original languageEnglish
Article number025033
JournalSmart Materials and Structures
Volume22
Issue number2
DOIs
Publication statusPublished - Feb 2013
Externally publishedYes

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A novel active fire protection approach for structural steel members using NiTi shape memory alloy'. Together they form a unique fingerprint.

Cite this