TY - JOUR
T1 - A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen
AU - Ren, Mingyi
AU - Ding, Shiming
AU - Shi, Dan
AU - Zhong, Zhilin
AU - Cao, Jingxin
AU - Yang, Liyuan
AU - Tsang, Daniel C.W.
AU - Wang, Dan
AU - Zhao, Donghua
AU - Wang, Yan
PY - 2020/7/10
Y1 - 2020/7/10
N2 - A new diffusive gradients in thin films technique (ZrO-AT DGT) with zirconium oxide, A-62 MP and T-42H resins containing in a single binding gel was developed for simultaneous measurement of nitrate (NO3-N), ammonium (NH4-N) and phosphate (PO4-P). The DGT uptake was found to be independent of pH variation from 3.2–8.7. Ionic strengths below 5, 10 and 750 mmol·L−1 NaCl did not affect DGT uptake of NH4-N, NO3-N and PO4-P, respectively. This new DGT was deployed in natural freshwater environments, with in situ measurements of the three nutrients found to be accurate. It ensured that rinsing the exposed surface of the DGT device at 3-day intervals can prevent biofouling. Additionally, a hybrid sensor comprising the novel DGT binding layer overlying an O2 planar optrode was tested in sediments to evaluate the dynamics of O2 and the three nutrients. Results showed that PO4-P and NO3-N fluxes decreased while fluxes of NH4-N increased under aerobic conditions. Nearly simultaneous variation in O2 and NO3-N was observed at the sediment-water interface (SWI) and transformation of NO3-N and PO4-P was found to be sensitively influenced by O2 dynamics.
AB - A new diffusive gradients in thin films technique (ZrO-AT DGT) with zirconium oxide, A-62 MP and T-42H resins containing in a single binding gel was developed for simultaneous measurement of nitrate (NO3-N), ammonium (NH4-N) and phosphate (PO4-P). The DGT uptake was found to be independent of pH variation from 3.2–8.7. Ionic strengths below 5, 10 and 750 mmol·L−1 NaCl did not affect DGT uptake of NH4-N, NO3-N and PO4-P, respectively. This new DGT was deployed in natural freshwater environments, with in situ measurements of the three nutrients found to be accurate. It ensured that rinsing the exposed surface of the DGT device at 3-day intervals can prevent biofouling. Additionally, a hybrid sensor comprising the novel DGT binding layer overlying an O2 planar optrode was tested in sediments to evaluate the dynamics of O2 and the three nutrients. Results showed that PO4-P and NO3-N fluxes decreased while fluxes of NH4-N increased under aerobic conditions. Nearly simultaneous variation in O2 and NO3-N was observed at the sediment-water interface (SWI) and transformation of NO3-N and PO4-P was found to be sensitively influenced by O2 dynamics.
KW - Ammonium
KW - Nitrate
KW - Passive sampling
KW - Phosphorus
KW - Simultaneous measurement
UR - http://www.scopus.com/inward/record.url?scp=85083260867&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.138447
DO - 10.1016/j.scitotenv.2020.138447
M3 - Journal article
AN - SCOPUS:85083260867
SN - 0048-9697
VL - 725
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 138447
ER -