A nanomachined tunable oscillator controlled by electrostatic and optical force

J. G. Huang, B. Dsong, H. Cai, Y. D. Gu, J. H. Wu, T. N. Chen, Z. C. Yang, Y. F. Jin, Y. L. Hao, D. L. Kwong, A. Q. Liu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

We develop a miniaturized electrostatically tunable optomechanical oscillator, whose frequencies can be electrostatically tuned by as much as 10%. By taking advantage of the optical and the electrical spring, the oscillator achieves a high tuning sensitivity without resorting to mechanical tension. Particularly, the high-Q optical cavity greatly enhances the system sensitivity, making it extremely sensitive to the motional signal, which is often overwhelmed by background noise.

Original languageEnglish
Title of host publication2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages45-48
Number of pages4
EditionFebruary
ISBN (Electronic)9781479979554
DOIs
Publication statusPublished - 26 Feb 2015
Externally publishedYes
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 18 Jan 201522 Jan 2015

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
NumberFebruary
Volume2015-February
ISSN (Print)1084-6999

Conference

Conference2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
Country/TerritoryPortugal
CityEstoril
Period18/01/1522/01/15

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A nanomachined tunable oscillator controlled by electrostatic and optical force'. Together they form a unique fingerprint.

Cite this