Abstract
Detection of recognition errors is important in many areas, such as improving recognition performance, saving manual effort for proof-reading and post-editing, and assigning appropriate weights for retrieval in constructing digital libraries. We propose a novel application of multiple classifiers for the detection of recognition errors. A need for multiple classifiers emerges when a single classifier cannot improve recognition-error detection performance compared with the current detection scheme using a simple threshold mechanism. Although the single classifier does not improve recognition error performance, it serves as a baseline for comparison and the related study of useful features for error detection suggests three distinct cases where improvement is needed. For each case, the multiple classifier approach assigns a classifier to detect the presence or absence of errors and additional features are considered for each case. Our results show that the recall rate (70-80%) of recognition errors, the precision rate (80-90%) of recognition error detection and the saving in manual effort (75%) were better than the corresponding performance using a single classifier or a simple threshold detection scheme.
Original language | English |
---|---|
Pages (from-to) | 723-738 |
Number of pages | 16 |
Journal | Pattern Recognition |
Volume | 38 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2005 |
Keywords
- Character recognition
- Error detection
- Pattern recognition and language modeling
ASJC Scopus subject areas
- Software
- Signal Processing
- Computer Vision and Pattern Recognition
- Artificial Intelligence