Abstract
Ride-hailing service has witnessed a dramatic growth over the past decade but meanwhile raised various challenging issues, one of which is how to provide a timely and accurate short-term prediction of supply and demand. While the predictions for zone-based demand have been extensively studied, much less efforts have been paid to the predictions for origin-destination (OD) based demand (namely, demand originating from one zone to another). However, OD-based demand prediction is even more important and worth further explorations, since it provides more elaborate trip information in the near future as reference for fine-grained operations, such as the routing and matching of shared ride-hailing services that pick up and drop off two or more passengers in each ride. Simultaneous prediction of both zone-based and OD-based demand can be an interesting and practical problem for the ride-hailing platforms. To address the issue, we propose a multi-task matrix factorized graph neural network (MT-MF-GCN), which consists of two major components: (1) a GCN (graph convolutional network) basic module that captures the spatial correlations among zones via mixture-model graph convolutional (MGC) network, and (2) a matrix factorization module for multi-task predictions of zone-based and OD-based demand. By evaluations on the real-world on-demand data in Manhattan and Haikou, we show that the proposed model outperforms the state-of-the-art baseline methods in both zone- and OD-based predictions.
Original language | English |
---|---|
Journal | IEEE Transactions on Intelligent Transportation Systems |
DOIs | |
Publication status | Accepted/In press - 2021 |
Keywords
- Correlation
- Data models
- Decoding
- deep multi-task learning.
- matrix factorization
- mixture-model graph convolutional network
- OD-based prediction
- Predictive models
- Ride-hailing
- Semantics
- Task analysis
- Transportation
ASJC Scopus subject areas
- Automotive Engineering
- Mechanical Engineering
- Computer Science Applications