Abstract
Successful identification of nodal metastases in patients with cancer is crucial to prescribe suitable treatment regimens that can improve recurrence-free survival. Although some new imaging technologies for nodal staging have been developed, such as nanoparticle-enhanced MRI and quantum-dot-based fluorescence imaging, sound technologies for intraoperative differentiation of metastatic and inflamed lymph nodes remain lacking. In this study, we illustrate the feasibility of using a macrophage-specific fluorescent probe (MFP) to visualize sentinel lymph nodes during surgery, highlighting abnormalities related to inflammation and tumor infiltration with signal enhancement and reduction methods using this technology. MFP was identified by high-throughput screening of fluorescent small-molecule libraries synthesized with a diversity-oriented approach. It selectively visualized monocyte and macrophage cell populations in vitro, by live-cell imaging and flow cytometry, as well as in vivo, for imaging-guided surgery. Collectively, this study provides preclinical proof of concept for an intraoperative imaging platform to accurately assess lymph node status, eliminating the need for invasive nodal dissections that can contribute to complications of cancer therapy.
Original language | English |
---|---|
Pages (from-to) | 44-55 |
Number of pages | 12 |
Journal | Cancer Research |
Volume | 74 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Cancer Research
- Oncology