A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance

Wei He, Zixuan Fan, Zequan Huang, Xingyu Liu, Jinchen Qian, Meng Ni, Peigen Zhang, Linfeng Hu, Zheng Ming Sun

Research output: Journal article publicationJournal articleAcademic researchpeer-review

18 Citations (Scopus)

Abstract

Layered vanadium-based oxides are regarded as promising cathode materials for zinc-ion batteries (ZIBs) due to their open-framework crystal structure and high theoretical specific capacity. However, the sluggish Zn2+ diffusion and poor structural stability limit their wide application in ZIBs. Herein, a new strategy is proposed to introduce metal ions and conjugated conductive polymers into layered hydrated V2O5 as a cathode material for ZIBs. For demonstration, Li+ and polyaniline (PANI) are co-intercalated into hydrated V2O5 (LPVO) resulting in an enlarged spacing of 14.4 Å. A ZIB with this LPVO cathode exhibits a capacity of 377 mA h g−1 at a current density of 0.1 A g−1, which is higher than that of a single Li+ pre-intercalated hydrated V2O5 (LVO) or PANI pre-intercalated host (PVO). Besides, a long-term cycling stability (94% capacity retention after 800 cycles at 5 A g−1) is achieved. The synergistic effect of pre-intercalated Li+ and PANI in LPVO originates from the weak electrostatic interactions between Zn2+ and the host O2−. Density functional theory (DFT) calculation results clearly show that LPVO possesses the lowest binding energy of 1.67 eV for Zn2+ insertion into the host (2.41 eV for LVO, 1.84 eV for PVO), indicating favorable reaction kinetics in LPVO, which is also confirmed by the fastest Zn2+ diffusion coefficient of LPVO among the three samples. The enlarged lattice space and stabilized host structure also improve the cycling performance. Our study elucidates the advantages of co-intercalated alien species in the host and provides a facile strategy to obtain high performance ZIBs.

Original languageEnglish
Pages (from-to)18962-18971
Number of pages10
JournalJournal of Materials Chemistry A
Volume10
Issue number36
DOIs
Publication statusPublished - 24 Aug 2022

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance'. Together they form a unique fingerprint.

Cite this