A Label Extension Schema for Improved Text Emotion Classification

Zongxi Li, Xianming Li, Haoran Xie, Qing Li, Xiaohui Tao

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

3 Citations (Scopus)

Abstract

Due to the subjectiveness and fuzziness of emotions in texts, researchers have been aware that it is ubiquitous to observe multiple emotions in a sentence, and the one-hot label approach is not informative enough in emotion-relevant text classification tasks. Therefore, to facilitate the classification task, recent works focus on generating and employing a coarse-grained emotion distribution, which is based on coarse-grained labels provided by the underlying dataset. Although such methods can alleviate the problem of overfitting and improve robustness, they may cause inter-class confusion between similar emotion categories and introduce undesirable noise during training. Meanwhile, current studies neglect the fine-grained emotions associated with these coarse-grained labels. To address the issue caused by utilizing a coarse-grained distribution, we propose in this paper a general and novel emotion label extension method based on fine-grained emotions. Specifically, we first identify a mapping function between coarse-grained emotions and fine-grained emotion concepts, and extend the original label space with specific fine-grained emotions. Then, we generate a fine-grained emotion distribution by employing a rule-based method, and utilize it as a model constraint to incorporate the dependencies among fine-grained emotions to predict the original coarse-grained emotion labels. We conduct extensive experiments to demonstrate the effectiveness of our proposed label extension method. The results indicate that our proposed method can produce notable improvements over baseline models on the applied datasets.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
PublisherAssociation for Computing Machinery
Pages32-39
Number of pages8
ISBN (Electronic)9781450391153
DOIs
Publication statusPublished - 14 Dec 2021
Event2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 - Virtual, Online, Australia
Duration: 14 Dec 202117 Dec 2021

Publication series

NameACM International Conference Proceeding Series

Conference

Conference2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
Country/TerritoryAustralia
CityVirtual, Online
Period14/12/2117/12/21

Keywords

  • emotion classification
  • label extension
  • sentiment analysis

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'A Label Extension Schema for Improved Text Emotion Classification'. Together they form a unique fingerprint.

Cite this