TY - GEN
T1 - A Label Extension Schema for Improved Text Emotion Classification
AU - Li, Zongxi
AU - Li, Xianming
AU - Xie, Haoran
AU - Li, Qing
AU - Tao, Xiaohui
N1 - Publisher Copyright:
© 2021 ACM.
PY - 2021/12/14
Y1 - 2021/12/14
N2 - Due to the subjectiveness and fuzziness of emotions in texts, researchers have been aware that it is ubiquitous to observe multiple emotions in a sentence, and the one-hot label approach is not informative enough in emotion-relevant text classification tasks. Therefore, to facilitate the classification task, recent works focus on generating and employing a coarse-grained emotion distribution, which is based on coarse-grained labels provided by the underlying dataset. Although such methods can alleviate the problem of overfitting and improve robustness, they may cause inter-class confusion between similar emotion categories and introduce undesirable noise during training. Meanwhile, current studies neglect the fine-grained emotions associated with these coarse-grained labels. To address the issue caused by utilizing a coarse-grained distribution, we propose in this paper a general and novel emotion label extension method based on fine-grained emotions. Specifically, we first identify a mapping function between coarse-grained emotions and fine-grained emotion concepts, and extend the original label space with specific fine-grained emotions. Then, we generate a fine-grained emotion distribution by employing a rule-based method, and utilize it as a model constraint to incorporate the dependencies among fine-grained emotions to predict the original coarse-grained emotion labels. We conduct extensive experiments to demonstrate the effectiveness of our proposed label extension method. The results indicate that our proposed method can produce notable improvements over baseline models on the applied datasets.
AB - Due to the subjectiveness and fuzziness of emotions in texts, researchers have been aware that it is ubiquitous to observe multiple emotions in a sentence, and the one-hot label approach is not informative enough in emotion-relevant text classification tasks. Therefore, to facilitate the classification task, recent works focus on generating and employing a coarse-grained emotion distribution, which is based on coarse-grained labels provided by the underlying dataset. Although such methods can alleviate the problem of overfitting and improve robustness, they may cause inter-class confusion between similar emotion categories and introduce undesirable noise during training. Meanwhile, current studies neglect the fine-grained emotions associated with these coarse-grained labels. To address the issue caused by utilizing a coarse-grained distribution, we propose in this paper a general and novel emotion label extension method based on fine-grained emotions. Specifically, we first identify a mapping function between coarse-grained emotions and fine-grained emotion concepts, and extend the original label space with specific fine-grained emotions. Then, we generate a fine-grained emotion distribution by employing a rule-based method, and utilize it as a model constraint to incorporate the dependencies among fine-grained emotions to predict the original coarse-grained emotion labels. We conduct extensive experiments to demonstrate the effectiveness of our proposed label extension method. The results indicate that our proposed method can produce notable improvements over baseline models on the applied datasets.
KW - emotion classification
KW - label extension
KW - sentiment analysis
UR - http://www.scopus.com/inward/record.url?scp=85128611361&partnerID=8YFLogxK
U2 - 10.1145/3486622.3493935
DO - 10.1145/3486622.3493935
M3 - Conference article published in proceeding or book
AN - SCOPUS:85128611361
T3 - ACM International Conference Proceeding Series
SP - 32
EP - 39
BT - Proceedings - 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
PB - Association for Computing Machinery
T2 - 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
Y2 - 14 December 2021 through 17 December 2021
ER -