Abstract
A hybrid optimal design strategy for wireless magnetic-resonant charger of deep brain stimulation devices is presented. It is proposed that a differential evolution algorithm with discrete variables (turn numbers of coils) and constrains (induced current and voltage in the load loop) is used to design the wireless power transfer system. The variables which normally include the sizes of the load coil, receiver coil, transmitter coil, source coil and capacitances are analyzed in the optimization study. Analytical formulas are embedded in the numerical optimization to speed up the convergence of the searching process. The designed receiver can receive enough power to recharge a 3.7 V circular button-type nickel-metal hydride rechargeable battery which can be implanted into the patients' skull. The performance of the designed system has been verified experimentally.
Original language | English |
---|---|
Article number | 6514610 |
Pages (from-to) | 2145-2148 |
Number of pages | 4 |
Journal | IEEE Transactions on Magnetics |
Volume | 49 |
Issue number | 5 |
DOIs | |
Publication status | Published - 22 May 2013 |
Keywords
- Biomedical implantable
- deep brain simulation
- optimal design
- wireless power transfer
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Electronic, Optical and Magnetic Materials