A hierarchical deep learning framework for combined rolling bearing fault localization and identification with data fusion

Mingxuan Liang, Kai Zhou

Research output: Journal article publicationJournal articleAcademic researchpeer-review

13 Citations (Scopus)

Abstract

Fault diagnosis of rolling bearings becomes an important research subject, where the data-driven deep learning-based techniques have been extensively exploited. While the state-of-the-art research has shown the substantial progresses in bearing fault diagnosis, they mostly were implemented upon the hypothesis that the location of bearing prone to failure already is known. Nevertheless, in actual practice many rolling bearings are installed in a complex machinery system, any of which is likely subject to fault. As such, fault diagnosis essentially is a process to achieve both fault localization and identification, which results in many fault scenarios to be handled. This will significantly degrade the fault diagnosis performance using conventional deep learning analysis. In this research, we aim to develop a new deep learning framework to address abovementioned challenge. We particularly design a hierarchical deep learning framework consisting of multiple sequentially deployed deep learning models built upon the transfer learning. This can improve the learning adequacy for a high-dimensional problem with many fault scenarios involved even under limited dataset, thereby enhancing the fault diagnosis performance. Without the prior knowledge regarding the fault location, this methodology is greatly favored by the sensor/data fusion which takes full advantage of the enriched pivot fault-related features in the measurements acquired from different accelerometers. Systematic case studies using the publicly accessible experimental rolling bearing dataset are carried out to validate this new methodology.

Original languageEnglish
JournalJVC/Journal of Vibration and Control
DOIs
Publication statusAccepted/In press - 2022
Externally publishedYes

Keywords

  • data fusion
  • deep learning
  • fault localization and identification
  • Rolling bearing
  • transfer learning

ASJC Scopus subject areas

  • General Materials Science
  • Automotive Engineering
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A hierarchical deep learning framework for combined rolling bearing fault localization and identification with data fusion'. Together they form a unique fingerprint.

Cite this