Abstract
Over the last few decades, production scheduling problems have received much attention. Due to global competition, it is important to have a vigorous control on production costs while keeping a reasonable level of production capability and customer satisfaction. One of the most important factors that continuously impacts on production performance is machining flexibility, which can reduce the overall production lead-time, work-in-progress inventories, overall job lateness, etc. It is also vital to balance various quantitative aspects of this flexibility which is commonly regarded as a major strategic objective of many firms. However, this aspect has not been studied in a practical way related to the present manufacturing environment. In this paper, an assignment and scheduling model is developed to study the impact of machining flexibility on production issues such as job lateness and machine utilisation. A genetic algorithm-based approach is developed to solve a generic machine assignment problem using standard benchmark problems and real industrial problems in China. Computational results suggest that machining flexibility can improve the overall production performance if the equilibrium state can be quantified between scheduling performance and capital investment. Then production planners can determine the investment plan in order to achieve a desired level of scheduling performance.
Original language | English |
---|---|
Pages (from-to) | 2451-2472 |
Number of pages | 22 |
Journal | International Journal of Production Research |
Volume | 43 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Jun 2005 |
Externally published | Yes |
Keywords
- Genetic algorithms
- Job-shop scheduling
- Machine assignment
- Machining flexibility
ASJC Scopus subject areas
- Strategy and Management
- Management Science and Operations Research
- Industrial and Manufacturing Engineering