A Generalized Surface Chalcogenation Strategy for Boosting the Electrochemical N2 Fixation of Metal Nanocrystals

Chengyong Yang, Bolong Huang, Shuxing Bai, Yonggang Feng, Qi Shao, Xiaoqing Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

36 Citations (Scopus)

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) is a promising process relative to energy-intensive Haber–Bosch process. While conventional electrocatalysts underperform with sluggish paths, achieving dissociation of N2 brings the key challenge for enhancing NRR. This study proposes an effective surface chalcogenation strategy to improve the NRR performance of pristine metal nanocrystals (NCs). Surprisingly, the NH3 yield and Faraday efficiency (FE) (175.6 ± 23.6 mg h–1 g–1 Rh and 13.3 ± 0.4%) of Rh-Se NCs is significantly enhanced by 16 and 15 times, respectively. Detailed investigations show that the superior activity and high FE are attributed to the effect of surface chalcogenation, which not only can decrease the apparent activation energy, but also inhibit the occurrence of the hydrogen evolution reaction (HER) process. Theoretical calculations reveal that the strong interface strain effect within core@shell system induces a critical redox inversion, resulting in a rather low valence state of Rh and Se surface sites. Such strong correlation indicates an efficient electron-transfer minimizing NRR barrier. Significantly, the surface chalcogenation strategy is general, which can extend to create other NRR metal electrocatalysts with enhanced performance. This strategy open a new avenue for future NH3 production for breakthrough in the bottleneck of NRR.

Original languageEnglish
Article number2001267
JournalAdvanced Materials
Volume32
Issue number24
Early online date10 May 2020
DOIs
Publication statusE-pub ahead of print - 10 May 2020

Keywords

  • metal nanocrystals
  • nitrogen reduction reaction
  • rhodium
  • surface chalcogenation
  • universality

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this