Abstract
Excavating and developing highly efficient and cost-effective nonnoble metal single-atom catalysts for electrocatalytic reactions is of paramount significance but still in its infancy. Herein, reported is a general NaCl template-assisted strategy for rationally designing and preparing a series of isolated transition metal single atoms (Fe/Co/Ni) anchored on honeycomb-like nitrogen-doped carbon matrix (M1-HNC-T1-T2, M = Fe/Co/Ni, T1 = 500 °C, T2 = 850 °C). The resulting M1-HNC-500-850 with M-N4 active sites exhibits superior capability for oxygen reduction reaction (ORR) with the half-wave potential order of Fe1-HNC-500-850 > Co1-HNC-500-850 > Ni1-HNC-500-850, in which Fe1-HNC-500-850 shows better performance than commercial Pt/C. Density functional theory calculations reveal a choice strategy that the strong p–d-coupled spatial charge separation results the Fe-N4 effectively merges active electrons for elevating d-band activity in a van-Hove singularity like character. This essentially generalizes an optimal electronic exchange-and-transfer (ExT) capability for boosting sluggish alkaline ORR activity. This work not only presents a universal strategy for preparing single-atom electrocatalyst to accelerate the kinetics of cathodic ORR but also provides an insight into the relationship between the electronic structure and the electrocatalytical activity.
Original language | English |
---|---|
Article number | 1906905 |
Journal | Advanced Materials |
Volume | 32 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Keywords
- NaCl template-assisted strategy
- oxygen reduction reaction
- p–d-coupled spatial charge separation
- single-atom electrocatalysts
ASJC Scopus subject areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering