Abstract
Ultrathin metal–organic framework nanosheets (UMOFNs) deposited on graphene are highly attractive, however direct growth of UMOFNs on graphene with controlled orientations remains challenging. Here, a low-concentration-assisted heterogeneous nucleation strategy is reported for the direct growth of UMOFNs on reduced graphene oxides (rGO) surface with controllable orientations. This general strategy can be applied to construct various UMOFNs on rGO, including Co-ZIF, Ni-ZIF, Co, Cu-ZIF and Co, Fe-ZIF. When UMOFNs are mostly attached perpendicularly on rGO, a 3D foam-like hierarchical architecture (named UMOFNs@rGO-F) is formed with an open pore structure and excellent conductivity, showing excellent performance as electrode materials for Li-ion batteries and oxygen evolution. The contribution has provided a strategy for improving the electrochemical performance of MOFs in energy storage applications.
Original language | English |
---|---|
Article number | 1901480 |
Journal | Advanced Science |
Volume | 7 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Feb 2020 |
Externally published | Yes |
Keywords
- electrochemical application
- graphene oxide
- metal–organic frameworks
- nanosheets
ASJC Scopus subject areas
- Medicine (miscellaneous)
- General Chemical Engineering
- General Materials Science
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- General Engineering
- General Physics and Astronomy