A feature extraction method for use with bimodal biometrics

Yong Xu, Dapeng Zhang, Jing Yu Yang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

152 Citations (Scopus)


Bimodal biometrics has been found to outperform single biometrics and are usually implemented using the matching score level or decision level fusion, though this fusion will enable less information of bimodal biometric traits to be exploited for personal authentication than fusion at the feature level. This paper proposes matrix-based complex PCA (MCPCA), a feature level fusion method for bimodal biometrics that uses a complex matrix to denote two biometric traits from one subject. The method respectively takes the two images from two biometric traits of a subject as the real part and imaginary part of a complex matrix. MCPCA applies a novel and mathematically tractable algorithm for extracting features directly from complex matrices. We also show that MCPCA has a sound theoretical foundation and the previous matrix-based PCA technique, two-dimensional PCA (2DPCA), is only one special form of the proposed method. On the other hand, the features extracted by the developed method may have a large number of data items (each real number in the obtained features is called one data item). In order to obtain features with a small number of data items, we have devised a two-step feature extraction scheme. Our experiments show that the proposed two-step feature extraction scheme can achieve a higher classification accuracy than the 2DPCA and PCA techniques.
Original languageEnglish
Pages (from-to)1106-1115
Number of pages10
JournalPattern Recognition
Issue number3
Publication statusPublished - 1 Mar 2010


  • Biometrics
  • Feature extraction
  • Matrix-based complex PCA (MCPCA)
  • Palmprint identification
  • Principal component analysis

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence


Dive into the research topics of 'A feature extraction method for use with bimodal biometrics'. Together they form a unique fingerprint.

Cite this