Abstract
If C ⊆ ℛScript n sign be a nonempty convex set, then f : C → ℛ is convex function if and only if it is a quasiconvex function on C and there exists some α ∈ (0, 1) such that f(αx + (1 - α)y) ≤ αf(x) + (1 - α)f(y), ∀ x, y ∈ C.
Original language | English |
---|---|
Pages (from-to) | 27-30 |
Number of pages | 4 |
Journal | Applied Mathematics Letters |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 11 Oct 1999 |
Keywords
- Characterization
- Convex function
- Convex set
- Intermediate-point convexity
- Quasiconvex function
ASJC Scopus subject areas
- Applied Mathematics