Abstract
This work introduces a bi-objective generalized data envelopment analysis (Bi-GDEA) model and defines its efficiency. We show the equivalence between the Bi-GDEA efficiency and the non-dominated solutions of the multi-objective programming problem defined on the production possibility set (PPS) and discuss the returns to scale under the Bi-GDEA model. The most essential contribution is that we further define a point-to-set mapping and the mapping projection of a decision making unit (DMU) on the frontier of the PPS under the Bi-GDEA model. We give an effective approach for the construction of the point-to-set-mapping projection which distinguishes our model from other non-radial models for simultaneously considering input and output. The Bi-GDEA model represents decision makers' specific preference on input and output and the point-to-set mapping projection provides decision makers with more possibility to determine different input and output alternatives when considering efficiency improvement. Numerical examples are employed for the illustration of the procedure of point-to-set mapping.
Original language | English |
---|---|
Pages (from-to) | 855-876 |
Number of pages | 22 |
Journal | European Journal of Operational Research |
Volume | 190 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Nov 2008 |
Keywords
- Bi-GDEA efficiency
- Data envelopment analysis (DEA)
- Non-dominated solution
- Point-to-set mapping projection
ASJC Scopus subject areas
- Information Systems and Management
- Management Science and Operations Research
- Statistics, Probability and Uncertainty
- Applied Mathematics
- Modelling and Simulation
- Transportation