3D model retrieval based on deep learning approach with weighted three-view deep features

Xuemei Jiang, Yaqi Li, Jiwei Hu, Kin Man Lam

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

With the development of computer graphics and three-dimensional (3D) modeling technology, 3D model retrieval has been widely used in different applications, such as industrial design, virtual reality, medical diagnosis, etc. Massive data brings new opportunities and challenges to the development of the 3D model retrieval technology. However, with the emergence of complex models, traditional retrieval algorithms are not applicable to some extent. One important reason for this is that the traditional content-based retrieval methods do not take the spatial information of 3D models into account during feature extraction. Therefore, how to use the spatial information of a 3D model to obtain a more extensive feature has become a significant issue. In our proposed algorithm, we first normalize and voxelize the model, and then extract features from different views of the voxelized model. Secondly, deep features are extracted by using our proposed feature learning network. Then, a new feature weighting algorithm is applied to our 3D-view-based features, which can emphasize the more important views of the 3D models, so the retrieval performance can be improved. The experimental results on the standard 3D model dataset, Princeton ModelNet10, show that our model can achieve promising performance.

Original languageEnglish
Title of host publicationInternational Workshop on Advanced Imaging Technology, IWAIT 2020
EditorsPhooi Yee Lau, Mohammad Shobri
PublisherSPIE
ISBN (Electronic)9781510638358
DOIs
Publication statusPublished - Jun 2020
EventInternational Workshop on Advanced Imaging Technology, IWAIT 2020 - Yogyakarta, Indonesia
Duration: 5 Jan 20207 Jan 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11515
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceInternational Workshop on Advanced Imaging Technology, IWAIT 2020
Country/TerritoryIndonesia
CityYogyakarta
Period5/01/207/01/20

Keywords

  • 3D model retrieval
  • Deep features
  • Deep learning
  • Feature weighting
  • Voxelization

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of '3D model retrieval based on deep learning approach with weighted three-view deep features'. Together they form a unique fingerprint.

Cite this