Abstract
In densely built urban areas such as Hong Kong, the positive effect of urban trees is to help maintain high environmental and social sustainability for the city while unmanaged trees lead to negative effects such as accidents, outbreaks of pests and diseases. The public awareness of urban tree population has been increasing and preserving all the benefits offered by trees, a continuous monitoring concept would be required. In this work, an efficient 3D map system for tree inventory in Hong Kong is presented to the based on automated tree detection from publicly available Google street view (GSV) panorama images. First, Convolutional Neural Networks (CNNs) based object detector and classifier-YOLOv3 with pretrained model is adopted to learn GSV images to detect tree objects. GSV depth image has been utilized to decode depth values of each GSV panorama image and will provide accurate information to calculate the tree geographic position. A "field of view" filter was designed to remove duplicated tree detection within the overlapped areas followed by spatial clustering applied to further increase the tree localization accuracy. The average distance between the detected trees and ground truth data was achieved within 3 meters for selected roads used for the experiment. Second, a 3D Map platform prototype for facilitating the urban tree monitoring and management was developed. Currently, there is no true 3D platform for interpreting the results of tree records in Hong Kong city areas. With the help of webGL technology, contemporary browsers are able to show 3D buildings, terrain and other scene components together with the obtained tree records in an open source 3D GIS platform, the level of visualization is enhanced as all the detected trees are placed on the 3D digital terrain model. Consequently, it is easy for end-users to know the actual position of the trees and their distribution.
Original language | English |
---|---|
Pages (from-to) | 765-772 |
Number of pages | 8 |
Journal | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - 3 Aug 2020 |
Event | 2020 24th ISPRS Congress on Technical Commission III - Nice, Virtual, France Duration: 31 Aug 2020 → 2 Sept 2020 |
Keywords
- 3D Map
- Convolutional Neural Networks
- Google Street View
- Tree Management
- Urban areas
ASJC Scopus subject areas
- Earth and Planetary Sciences (miscellaneous)
- Environmental Science (miscellaneous)
- Instrumentation