Abstract
The properties of mechanical metamaterials such as strength and energy absorption are often “locked” upon being manufactured. While there have been attempts to achieve tunable mechanical properties, state-of-the-art approaches still cannot achieve high strength/energy absorption with versatile tunability simultaneously. Herein, we fabricate for the first time, 3D architected organohydrogels with specific energy absorption that is readily tunable in an unprecedented range up to 5 × 103 (from 0.0035 to 18.5 J g−1) by leveraging on the energy dissipation induced by the synergistic combination of hydrogen bonding and metal coordination. The 3D architected organohydrogels also possess anti-freezing and non-drying properties facilitated by the hydrogen bonding between ethylene glycol and water. In a broader perspective, this work demonstrates a new type of architected metamaterials with the ability to produce a large range of mechanical properties using only a single material system, pushing forward the applications of mechanical metamaterials to broader possibilities.
Original language | English |
---|---|
Article number | 102789 |
Journal | iScience |
Volume | 24 |
Issue number | 7 |
DOIs | |
Publication status | Published - 23 Jul 2021 |
Externally published | Yes |
Keywords
- mechanical property
- metamaterials
- soft matter
ASJC Scopus subject areas
- General