Abstract
Tin (Sn)-based perovskites with favorable optoelectronic properties and ideal bandgaps have emerged as promising alternatives to toxic lead (Pb)-based perovskites for photovoltaic applications. However, it is challenging to obtain high-quality Sn-based perovskite films by solution process. Here, liquid-exfoliated 2D transition-metal dichalcogenides (i.e., MoS2, WS2, and WSe2) with smooth and defect-free surfaces are applied as growth templates for spin-coated FASnI3 perovskite films, leading to van der Waals epitaxial growth of perovskite grains with a growth orientation along (100). The authors find that WSe2 has better energy alignment with FASnI3 than MoS2 and WS2 and results in a cascade band structure in resultant perovskite solar cells (PSCs), which can facilitate hole extraction and suppress interfacial charge recombination in the devices. The WSe2-modified PSCs show a power conversion efficiency up to 10.47%, which is among the highest efficiency of FASnI3-based PSCs. The appealing solution phase epitaxial growth of FASnI3 perovskite on 2D WSe2 flakes is expected to find broad applications in optoelectronic devices.
Original language | English |
---|---|
Article number | 2004315 |
Journal | Advanced Science |
Volume | 8 |
Issue number | 11 |
DOIs | |
Publication status | Published - 9 Jun 2021 |
Keywords
- 2D transition-metal dichalcogenides
- charge transfer
- grain growth
- tin-based perovskite solar cells
- WSe
ASJC Scopus subject areas
- Medicine (miscellaneous)
- Chemical Engineering(all)
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- Materials Science(all)
- Engineering(all)
- Physics and Astronomy(all)